博客
关于我
HDU 2669 Romantic(扩展欧几里得算法)
阅读量:719 次
发布时间:2019-03-21

本文共 1394 字,大约阅读时间需要 4 分钟。

为了解决这个问题,我们需要找到满足方程 ax + by = 1 的整数解,其中 x 是非负的,并且尽可能小。只有当 a 和 b 互质时,这个方程才有解。我们可以通过扩展欧几里得算法来找到一组解,并对其进行调整以满足要求。

方法思路

  • 检查互质性:首先检查 a 和 b 是否互质,即它们的最大公约数是否为 1。只有当它们互质时,方程才有解。
  • 扩展欧几里得算法:使用扩展欧几里得算法找到一个初始解 (x0, y0)。这个解可能会有负数的 x。
  • 调整解:将初始解进行调整,使得 x 变为正数。通过调整,我们可以找到所有可能的解中的 x 最小的非负的解。
  • 解决代码

    #include 
    #pragma warning(disable:4996)int a, b, x, y;int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b);}int extgcd(int a, int b, int x, int y) { int d = a; if (b != 0) { d = extgcd(b, a % b, x, y); y -= (a / b) * x; } else { x = 1; y = 0; } return d;}int main() { while (scanf("%d %d", &a, &b) != EOF) { if (extgcd(a, b, x, y) > 1) { puts("sorry"); continue; } if (y < 0) { y = -y; a = -a; } if (x < 0) { x = -x; b = -b; } if (extgcd(a, b, x, y, 1) != 1) { puts("sorry"); continue; } while (x >= 0) { x -= b; y += a; } while (x < 0) { x += b; y -= a; } printf("%d %d\n", x, y); } return 0;}

    代码解释

  • 输入处理:使用 scanf 读取输入,直到 EOF。
  • 检查互质性:通过扩展欧几里得算法检查 a 和 b 的最大公约数,如果大于 1,则输出 "sorry"。
  • 初始解调整:对于可能的负数解,通过调整 x 和 y 以确保它们是正整数。
  • 调整解:利用扩展欧几里得算法的结果,进一步调整 x 和 y,使得 x 为最小的非负解。
  • 输出结果:打印满足条件的 x 和 y 的值。
  • 通过这种方法,我们能够高效地找到满足条件的解,并确保输出的 x 是最小的非负整数。

    转载地址:http://lotez.baihongyu.com/

    你可能感兴趣的文章
    Nginx用户认证
    查看>>
    Nginx的location匹配规则的关键问题详解
    查看>>
    Nginx的Rewrite正则表达式,匹配非某单词
    查看>>
    Nginx的使用总结(一)
    查看>>
    Nginx的使用总结(三)
    查看>>
    Nginx的使用总结(二)
    查看>>
    Nginx的可视化神器nginx-gui的下载配置和使用
    查看>>
    Nginx的是什么?干什么用的?
    查看>>
    Nginx访问控制_登陆权限的控制(http_auth_basic_module)
    查看>>
    nginx负载均衡和反相代理的配置
    查看>>
    nginx负载均衡器处理session共享的几种方法(转)
    查看>>
    nginx负载均衡的5种策略(转载)
    查看>>
    nginx负载均衡的五种算法
    查看>>
    nginx转发端口时与导致websocket不生效
    查看>>
    Nginx运维与实战(二)-Https配置
    查看>>
    Nginx配置Https证书
    查看>>
    Nginx配置ssl实现https
    查看>>
    Nginx配置TCP代理指南
    查看>>
    Nginx配置——不记录指定文件类型日志
    查看>>
    nginx配置一、二级域名、多域名对应(api接口、前端网站、后台管理网站)
    查看>>