博客
关于我
HDU 2669 Romantic(扩展欧几里得算法)
阅读量:719 次
发布时间:2019-03-21

本文共 1394 字,大约阅读时间需要 4 分钟。

为了解决这个问题,我们需要找到满足方程 ax + by = 1 的整数解,其中 x 是非负的,并且尽可能小。只有当 a 和 b 互质时,这个方程才有解。我们可以通过扩展欧几里得算法来找到一组解,并对其进行调整以满足要求。

方法思路

  • 检查互质性:首先检查 a 和 b 是否互质,即它们的最大公约数是否为 1。只有当它们互质时,方程才有解。
  • 扩展欧几里得算法:使用扩展欧几里得算法找到一个初始解 (x0, y0)。这个解可能会有负数的 x。
  • 调整解:将初始解进行调整,使得 x 变为正数。通过调整,我们可以找到所有可能的解中的 x 最小的非负的解。
  • 解决代码

    #include 
    #pragma warning(disable:4996)int a, b, x, y;int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b);}int extgcd(int a, int b, int x, int y) { int d = a; if (b != 0) { d = extgcd(b, a % b, x, y); y -= (a / b) * x; } else { x = 1; y = 0; } return d;}int main() { while (scanf("%d %d", &a, &b) != EOF) { if (extgcd(a, b, x, y) > 1) { puts("sorry"); continue; } if (y < 0) { y = -y; a = -a; } if (x < 0) { x = -x; b = -b; } if (extgcd(a, b, x, y, 1) != 1) { puts("sorry"); continue; } while (x >= 0) { x -= b; y += a; } while (x < 0) { x += b; y -= a; } printf("%d %d\n", x, y); } return 0;}

    代码解释

  • 输入处理:使用 scanf 读取输入,直到 EOF。
  • 检查互质性:通过扩展欧几里得算法检查 a 和 b 的最大公约数,如果大于 1,则输出 "sorry"。
  • 初始解调整:对于可能的负数解,通过调整 x 和 y 以确保它们是正整数。
  • 调整解:利用扩展欧几里得算法的结果,进一步调整 x 和 y,使得 x 为最小的非负解。
  • 输出结果:打印满足条件的 x 和 y 的值。
  • 通过这种方法,我们能够高效地找到满足条件的解,并确保输出的 x 是最小的非负整数。

    转载地址:http://lotez.baihongyu.com/

    你可能感兴趣的文章
    NuGet(微软.NET开发平台的软件包管理工具)在VisualStudio中的安装的使用
    查看>>
    nuget.org 无法加载源 https://api.nuget.org/v3/index.json 的服务索引
    查看>>
    Nuget~管理自己的包包
    查看>>
    NuGet学习笔记001---了解使用NuGet给net快速获取引用
    查看>>
    nullnullHuge Pages
    查看>>
    NullPointerException Cannot invoke setSkipOutputConversion(boolean) because functionToInvoke is null
    查看>>
    null可以转换成任意非基本类型(int/short/long/float/boolean/byte/double/char以外)
    查看>>
    Number Sequence(kmp算法)
    查看>>
    Numix Core 开源项目教程
    查看>>
    numpy
    查看>>
    Numpy 入门
    查看>>
    NumPy 库详细介绍-ChatGPT4o作答
    查看>>
    NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
    查看>>
    numpy 或 scipy 有哪些可能的计算可以返回 NaN?
    查看>>
    numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
    查看>>
    numpy 数组与矩阵的乘法理解
    查看>>
    NumPy 数组拼接方法-ChatGPT4o作答
    查看>>
    numpy 用法
    查看>>
    Numpy 科学计算库详解
    查看>>
    Numpy.fft.fft和numpy.fft.fftfreq有什么不同
    查看>>